
CSCI5550 Advanced File and Storage Systems

Lecture 03: File System Basics

Ming-Chang YANG

mcyang@cse.cuhk.edu.hk

mailto:mcyang@cse.cuhk.edu.hk

Outline

• File System Organization

– Abstraction: Files and Directories

– Metadata Region and Data Region

• File System Interface

• File System Implementations

– UNIX File System

• Access Paths: Reading and Writing

• Caching and Buffering

– Fast File System (FFS)

• Disk Awareness

• Data Locality

– Crash Consistency

• File System Checker

• Journaling

CSCI5550 Lec03: File System Basics 2

Application

File System

Block Layer

Device Driver

I/O Device

User

Kernel

I/O Stack

Abstraction: Files and Directories

• File: a linear array of bytes that can be read/written

– Each file has a low-level name (or inode number) that

uniquely identifies itself in the file system.

• Often, the user is not aware of this name.

• Directory: a list of entries

– A directory has an inode number as well.

– A directory is just a special type of file with specific content.

• Each entry is a pair of (user-readable name, inode number).

• Each entry refers to either files or other directories.

• A directory tree is formed

– Leaf node: file

– Non-leaf node: directory

CSCI5550 Lec03: File System Basics 3

Directory Tree

• / is the root directory.

– / is also used as a “separator” to name subsequent sub-

directories and files.

• A file/directory is referred by the absolute pathname.

– Directories and files can have the same name.

• If they are in different locations/directories (e.g., /bar/foo/bar.txt).

– The file extension is to indicate the type of a file (e.g., .txt).
CSCI5550 Lec03: File System Basics 4

/bar/foo/bar.txt

Outline

• File System Organization

– Abstraction: Files and Directories

– Metadata Region and Data Region

• File System Interface

• File System Implementations

– UNIX File System

• Access Paths: Reading and Writing

• Caching and Buffering

– Fast File System (FFS)

• Disk Awareness

• Data Locality

– Crash Consistency

• File System Checker

• Journaling

CSCI5550 Lec03: File System Basics 5

Application

File System

Block Layer

Device Driver

I/O Device

User

Kernel

I/O Stack

Overall Organization

• On-Disk Organization

– A series of blocks (e.g., 4 KB) is addressed from 0 to N −1.

• File System Organization

– Metadata Region: tracks data and file system information.

– Data Region: stores user data and occupies most space.
CSCI5550 Lec03: File System Basics 6

File System Metadata

• Inode (I): tracks “everything” about a file / directory.

– Each inode is referenced by an i-number (low-level name).

• Given an i-numbers, the inode can be located.

– An inode keeps which data block(s) are used for a file / dir.

– Inode Table: the collection of all inodes.

• i-bmap: tracks which inode is allocated.

• d-bitmap: tracks which data block is allocated.

• Superblock (S): tracks a file system.

CSCI5550 Lec03: File System Basics 7

Discussion

• Question: How to locate an inode by the i-number in

the disk?

– Note 1: Each inode is small in size.

– Note 2: A block can hold multiple inodes.

– Note 3: disk is addressed by sectors.

• Answer:

– Let inodeStartAddr be start address of the inode table.

– Let sizeof(inode_t) be the size of a single inoode.

CSCI5550 Lec03: File System Basics 8

blk = (inumber * sizeof(inode_t)) / blockSize;
sector = ((blk * blockSize) + inodeStartAddr) / sectorSize;

File Organization: Inode (1/3)

• The most important design of the inode:

How it refers to where data blocks are.

• One simple approach would be to have one or more

direct pointers (each refers to one data block).

– Challenge: Hard to support files of big sizes.

• Multi-Level Index

– Direct Pointer: points to a data block explicitly.

– Indirect Pointer: points to an indirect block that holds

(multiple) pointers to data blocks.

– Double Indirect Pointer: points to pointers to indirect

blocks.

– Triple Indirect Pointer: points to pointers to pointers to

indirect blocks.
CSCI5550 Lec03: File System Basics 9

File Organization: Inode (2/3)

CSCI5550 Lec03: File System Basics 10

Each ext2 inode

15 disk pointers:

• 12 direct pointers;

• 1 indirect pointer;

• 1 double indirect pointer;

• 1 triple indirect pointer

Indirect

Blocks

Discussion

• Question: Why we maintain an imbalance tree?

• Answer:

– Most files are small in practice.

– Access performance is optimized for small files.

• Bonus: How big can a file be in Ext2?

– Let the block size be 4KB;

– Let each pointer size be 4 bytes.

– Note: Each inode in Ext2 has 12 direct pointers; 1 indirect

pointer; 1 double indirect pointer; 1 triple indirect pointer.

CSCI5550 Lec03: File System Basics 11

File Organization: Inode (3/3)

• An inode tracks everything except “file name” (why?).

CSCI5550 Lec03: File System Basics 12

Directory Organization

• A directory is a special type of file.

– Each directory is also associated with an inode number.

– A directory contains a list of (file name, inode number)

pairs in its corresponding data block(s).

. = current directory

.. = parent directory

strlen = length of the file name (including ‘\0’)

reclen = actual space for an entry (used when deletion)
CSCI5550 Lec03: File System Basics 13

inum | reclen | strlen | name
5 12 2 .
2 12 3 ..
12 12 4 foo
13 12 4 bar
24 36 28 foobar_is_a_pretty_lon

Free Space Management

• A file system must track which inodes and data

blocks are allocated or not:

– Bitmap is one way for free space management.

• 0: free; 1: used

– Other structures, e.g., free list and B-tree, are feasible.

• There is always a trade-off between time and space.

– Pre-allocation may also be used.

• Strategy: Always looking for a sequence of free blocks (say 8).

– A portion of the file will be contiguous on the disk (better performance).

CSCI5550 Lec03: File System Basics 14

Exercise

• Question: Can you locate the data block(s) for a file?

CSCI5550 Lec03: File System Basics 15

/foo/bar.txt

The root inode number must be

“well known” (e.g., inode #2).

Outline

• File System Organization

– Abstraction: Files and Directories

– Metadata Region and Data Region

• File System Interface

• File System Implementations

– UNIX File System

• Access Paths: Reading and Writing

• Caching and Buffering

– Fast File System (FFS)

• Disk Awareness

• Data Locality

– Crash Consistency

• File System Checker

• Journaling

CSCI5550 Lec03: File System Basics 16

Application

File System

Block Layer

Device Driver

I/O Device

User

Kernel

I/O Stack

File System Interface

• File system interface includes:

– Creating files;

– Reading/writing files;

– Renaming files;

– Getting information about files;

– Removing files;

– Managing directories;

– Linking files/directories;

– Mounting/unmounting a file system.

• The file system interface uses (or wraps) the OS

system calls for file/directory management.

– We focus on UNIX.

CSCI5550 Lec03: File System Basics 17

System Calls

CSCI5550 Lec03: File System Basics 18

System

Call

Handler

function pointer(s)

Creating Files (1/2)

• The system call open() is to create or open a file:

int fd = open("foo", O_CREAT | O_WRONLY | O_TRUNC,

S_IRUSR|S_IWUSR);

– 1st argument: file name (absolute or relative pathname)

– 2nd argument:

• O_CREAT: creates a file;

• O_WRONLY: only write is allowed;

• O_TRUNC: truncate to zero size if a file exists.

– 3rd argument: specifies permissions (readable or writable).

• On success, a file descriptor is returned

– A pointer for subsequent accesses (function calls) to a file.

– In UNIX, it’s just an integer.
CSCI5550 Lec03: File System Basics 20

Creating Files (2/2)

• File descriptors are managed on a per-process

basis by the operating system .

• For example, the UNIX systems (xv6 kernel) must

keep some kind of structure in the struct proc:

struct proc {

...

struct file *ofile[NOFILE]; // Open files

...

};

– A simple array (with a maximum of NOFILE open files)

tracks which files are opened on a per-process basis.

– Each entry of the array is just a pointer to a struct file,

which tracks the information of the “open file” being used.

CSCI5550 Lec03: File System Basics 21

Management of Open Files (1/2)

• The struct file represents an open file:

– The struct file (an open file) is referenced by a process.

– The readable/writable specifies read/write permissions.

– The off keeps the “current” offset, where the next

read/write should take place, for this open file.

– The actual file is referenced by the struct inode.

• All open files are kept in an open file table by OS.
CSCI5550 Lec03: File System Basics 22

struct file {
struct inode *ip;
char readable;
char writable;
uint off;
int ref; };

struct proc {
...
struct file *ofile[N];
// open files
...

};

CSCI5550 Lec03: File System Basics 23

File System Organization

Management of Open Files (2/2)

Open File TableProcess A

3

inode

#1000

Process B

3

Process C

3

inode *ip

off: 0

ref: 1

inode *ip

off: 0

ref: 1
inode

#2000

struct
proc

inode *ip

off: 100

ref: 1

(struct file)

struct
proc

struct
proc

File

A

File

B

• How does a process actually read or write a file?

• Exercise: Let’s use the strace tool to trace every

system call made by reading (cat) the file foo:

prompt> strace cat foo
...
open("foo", O_RDONLY|O_LARGEFILE) = 3
read(3, "hello\n", 4096) = 6
write(1, "hello\n", 6) = 6
hello
read(3, "", 4096) = 0
close(3) = 0
...

Reading and Writing Files (1/4)

CSCI5550 Lec03: File System Basics 24

Reading and Writing Files (2/4)

open("foo", O_RDONLY|O_LARGEFILE) = 3

• First, the open() system call opens a file for reading:

– O_RDONLY: read only (writing is not allowed)

– O_LARGEFILE: 64-bit offset is used.

• open() returns a file descriptor of 3.

– Each running process already has three “open files”:

• Standard Input: 0

• Standard Output: 1

• Standard Error: 2

CSCI5550 Lec03: File System Basics 25

Reading and Writing Files (3/4)

read(3, "hello\n", 4096) = 6

write(1, "hello\n", 6) = 6

hello

read(3, "", 4096) = 0

close(3) = 0

• read() are called for many times to read the file:

– 1st argument: file descriptor

– 2nd argument: buffer where the results are stored

– 3rd argument: size of the buffer

• write() is called to display output on screen (fd=1).

• close() is called when reaching the EOF.

• Writing a file? open()  write()  close()
26CSCI5550 Lec03: File System Basics

Reading and Writing (4/4)

• lseek() is to read or write to a specific offset within a

file (rather than from the beginning to the end).

off_t lseek(int fd, off_t offset, int whence);

– 1st argument: file descriptor

– 2nd argument: positions the offset to a particular

location within a file (for subsequent reads/writes).

• lseek() has nothing to do with a disk seek!

– 3rd argument: specifies how lseek() is performed.
• SEEK_SET: set to offset bytes from the beginning

• SEEK_CUR: set to current location plus offset bytes

• SEEK_END: set to offset bytes from the end

CSCI5550 Lec03: File System Basics 27

Exercise

• Let’s track a process that

– opens a file named “file” (of size 300 bytes);

– reads it by calling the read() system call repeatedly (each

time reading 100 bytes).

CSCI5550 Lec03: File System Basics 28

System

Calls

Return

Code

Current

Offset

fd = open("file", O RDONLY); 3 0

read(fd, buffer, 100); 100 100

read(fd, buffer, 100); 100 200

read(fd, buffer, 100); 100 300

read(fd, buffer, 100); 0 300

close(fd); 0 -

System

Calls

Return

Code

Current

Offset

fd = open("file", O RDONLY);

read(fd, buffer, 100);

read(fd, buffer, 100);

read(fd, buffer, 100);

read(fd, buffer, 100);

close(fd);

Exercise

• Let’s track a process that

– uses lseek() to reposition the current offset;

– reads 50 bytes from the file;

– closes the file.

CSCI5550 Lec03: File System Basics 29

System

Calls

Return

Code

Current

Offset

fd = open("file", O RDONLY); 3 0

lseek(fd, 200, SEEK_SET); 200 100

read(fd, buffer, 50); 50 250

close(fd); 0 -

System

Calls

Return

Code

Current

Offset

fd = open("file", O RDONLY);

lseek(fd, 200, SEEK_SET);

read(fd, buffer, 50);

close(fd);

Exercise

• Let’s track a process that

– opens the same file (named “file”) twice;

– issues a read to each of them.

CSCI5550 Lec03: File System Basics 30

System

Calls

Return

Code

Current

Offset

(fd1)

Current

Offset

(fd2)

fd1 = open("file", O RDONLY); 3 0 -

fd2 = open("file", O RDONLY); 4 0 0

read(fd1, buffer1, 100); 100 100 0

read(fd2, buffer2, 100); 100 100 100

close(fd1); 0 - 100

close(fd2); 0 - -

System

Calls

Return

Code

Current

Offset

(fd1)

Current

Offset

(fd2)

fd1 = open("file", O RDONLY);

fd2 = open("file", O RDONLY);

read(fd1, buffer1, 100);

read(fd2, buffer2, 100);

close(fd1);

close(fd2);

Shared File Table Entries

• In many cases, the mapping of file descriptor to an

entry in the open file table is a one-to-one mapping.

• An entry in the open file table can be shared when

– A parent process creates a child process with fork();

– A process creates a few file descriptors that refers to the

same file with dup() or its cousins dup2() and dup3().

CSCI5550 Lec03: File System Basics 31

Open File TableParent

3

inode *ip

off: 100

ref: 2

(struct file)

Child

3

Open File TableProc

3
6

inode *ip

off: 100

ref: 2

(struct file)

Forcing Writes

• For performance, the file system buffers writes in

memory (e.g., for 5 sec or 30 sec).

• The fsync() system call forces all dirty (i.e., not yet

written) data to the disk.

CSCI5550 Lec03: File System Basics 32

int fd = open("foo", O_CREAT|O_WRONLY|O_TRUNC,
S_IRUSR|S_IWUSR);

assert(fd > -1);
int rc = write(fd, buffer, size);
assert(rc == size);
rc = fsync(fd);
assert(rc == 0);

Information of Files

• The file system keeps a fair amount of information

about each file it is storing.

– stat() or fstat() calls can be used to see the metadata.

CSCI5550 Lec03: File System Basics 33

struct stat {
dev_t st_dev; /* ID of device containing file */
ino_t st_ino; /* inode number */
mode_t st_mode; /* protection */
nlink_t st_nlink; /* number of hard links */
uid_t st_uid; /* user ID of owner */
gid_t st_gid; /* group ID of owner */
dev_t st_rdev; /* device ID (if special file) */
off_t st_size; /* total size, in bytes */
blksize_t st_blksize; /* blocksize for filesystem I/O */
blkcnt_t st_blocks; /* number of blocks allocated */
time_t st_atime; /* time of last access */
time_t st_mtime; /* time of last modification */
time_t st_ctime; /* time of last status change */ };

Summary of File System Operations

File System Operations System Calls

Creating a file open()

Reading a file read()

Writing a file write(), fsync()

Seeking to an offset lseek()

Renaming a file rename() (often an atomic call)

Getting file information stat() or fstat()

Removing a file unlink()

Making a directory mkdir()

Reading a directory opendir(), readdir(), closedir()

Removing a directing rmdir() (must be empty)

CSCI5550 Lec03: File System Basics 34

Links

• File systems allow links to create multiple names

(aliases) for the same file

– Hard Link: holds the inode number of a file.

– Symbolic/Soft Link: holds the pathname to a file.

CSCI5550 Lec03: File System Basics 35

Recall: Directory Organization

• A directory is a special type of file.

– Each directory is also associated with an inode number.

– A directory contains a list of (file name, inode number)

pairs in its corresponding data block(s).

. = current directory

.. = parent directory

strlen = length of the file name (including ‘\0’)

reclen = actual space for an entry (used when deletion)
CSCI5550 Lec03: File System Basics 36

inum | reclen | strlen | name
5 12 2 .
2 12 3 ..
12 12 4 foo
13 12 4 bar
24 36 28 foobar_is_a_pretty_lon

Hard Link

• Hard link (ln) creates a new entry in the directory to

refer to the same inode number of the original file.

• The inode has a reference count that keeps track of

how many hard links refer to it.

– Only when the reference count is zero, the file system frees

the inode and related data blocks.

– This explains why unlink() is called when removing a file.

CSCI5550 Lec03: File System Basics 37

prompt> echo hello > file
prompt> cat file
hello
prompt> ln file hard_link
prompt> cat hard_link
hello

Create a Hard Link

prompt>
ls -i file hard_link
67158084 file
67158084 hard_link

Show inode Numbers

prompt> rm file
removed ‘file’
prompt> cat hard_link
hello

Remove a File

Recall: File Organization: Inode

• An inode tracks everything except “file name” (why?).

CSCI5550 Lec03: File System Basics 38

Symbolic/Soft Link

• Hard links are limited:

– Cannot link to a directory (to avoid creating a cycle).

– Cannot link to a different partition (only within a file system).

• Symbolic Link (ln -s)

– It is a special file with its own inode number.

– It holds a pointer to link but may cause dangling reference.

CSCI5550 Lec03: File System Basics 39

prompt> echo hello > file
prompt> cat file
hello
prompt> ln -s file soft_link
prompt> cat soft_link
hello
prompt> rm file
prompt> cat soft_link
cat: soft_link: No such file or directory

ref count: 1

Hard Link vs. Soft Link

CSCI5550 Lec03: File System Basics 40

• File systems allow links to create multiple names

(aliases) for the same file

– Hard Link: holds the inode number of a file

• By only creating a new directory entry.

– Symbolic/Soft Link: holds the pathname to a file

• By creating a new file of special type.

• Three types of file: 1) Data File; 2) Directory File; 3) Soft Link File.

inum | name
12 file
12 hard_link

Directory

ino

#12
fileDisk

inum | name
12 file
13 soft_link

Directory

ino

#12
fileDisk

ino

#13

path

“file”
ref count: 2

Mounting a File System

• Final Step: Set up a file system to make it run.

• Mounting (mount) a file system:

– Create a mount point

– Paste a file system onto the directory tree at that point

• You can have multiple file systems on the same

machine, and mounts all file systems into one tree!

CSCI5550 Lec03: File System Basics 41

prompt> mount -t ext3 /dev/sda1 /home/users

/home/users/dev/sda1 on / type ext3 (rw)
proc on /proc type proc (rw)
sysfs on /sys type sysfs (rw)
/dev/sda5 on /tmp type ext3 (rw)
/dev/sda7 on /var/vice/cache type ext3 (rw)
tmpfs on /dev/shm type tmpfs (rw)
AFS on /afs type afs (rw)

your I/O device (SCSI)

Outline

• File System Organization

– Abstraction: Files and Directories

– Metadata Region and Data Region

• File System Interface

• File System Implementations

– UNIX File System

• Access Paths: Reading and Writing

• Caching and Buffering

– Fast File System (FFS)

• Disk Awareness

• Data Locality

– Crash Consistency

• File System Checker

• Journaling

CSCI5550 Lec03: File System Basics 42

Application

File System

Block Layer

Device Driver

I/O Device

User

Kernel

I/O Stack

UNIX File System

• The organization we have learnt is a simplified

version of a typical UNIX file system:

– Metadata Region: tracks data and file system information.

– Data Region: stores user data and occupies most space.

CSCI5550 Lec03: File System Basics 43

Outline

• File System Organization

– Abstraction: Files and Directories

– Metadata Region and Data Region

• File System Interface

• File System Implementations

– UNIX File System

• Access Paths: Reading and Writing

• Caching and Buffering

– Fast File System (FFS)

• Disk Awareness

• Data Locality

– Crash Consistency

• File System Checker

• Journaling

CSCI5550 Lec03: File System Basics 44

Application

File System

Block Layer

Device Driver

I/O Device

User

Kernel

I/O Stack

Recall: Exercise

• Question: Can you locate the data block(s) for a file?

CSCI5550 Lec03: File System Basics 45

/foo/bar.txt

The root inode number must be

“well known” (e.g., inode #2).

Access Path: Read (1/2)

• Example: Read a file /foo/bar

– Traverse the pathname to locate the requested inode:

• root foo bar

CSCI5550 Lec03: File System Basics 46

1. Read root inode (must be known) to locate root data

2. Read root data to find foo inode

3. Read foo inode to locate foo data

4. Read foo data to find bar inode

5. Read bar inode into memory*

6. Read bar inode to locate data

7. Read data block of bar
8. Update timestamp of bar inode

Access Path: Read (2/2)

– Note 1: The amount of I/O generated by the open() is

proportional to the length of the pathname.

• Large directories would make this worse. (Why? Step 4)

– Note 2: The following work is also needed but not listed:

• Step 5 also needs to check permissions; allocate a file descriptor

for this process; create an entry in the open-file table; return the file

descriptor to the user.

– Note 3: The read will further update the in-memory open

file table to maintain the file offset for this file descriptor.

• Such that the next read will read the subsequent file block.

CSCI5550 Lec03: File System Basics 47

6. Read bar inode to locate data

Access Path: Write (1/2)

• Example: Create (write) a new file /foo/bar

CSCI5550 Lec03: File System Basics 48

1. The file must be opened as well

2. FS must not only allocate an

inode, but also allocate space

within the directory for the file

(find a free inode)
(mark it allocated)

(initialize)

(link the file name and the inode in dir)

(update)

10

I/Os

5

I/Os

5

I/Os

5

I/Os

(find a free data block)

(update data bitmap) (update with the new data block location)
(write the actual data block)

Access Path: Write (2/2)

– 10 I/Os are needed to walk the pathname and create file.

• If the directory needs to grow, additional I/Os are needed.

– i.e., to the data bitmap, and the new directory block.

– Each data block write logically generates 5 I/Os.

• If write() involves indirect pointers, more I/Os are needed as well.

CSCI5550 Lec03: File System Basics 49

Outline

• File System Organization

– Abstraction: Files and Directories

– Metadata Region and Data Region

• File System Interface

• File System Implementations

– UNIX File System

• Access Paths: Reading and Writing

• Caching and Buffering

– Fast File System (FFS)

• Disk Awareness

• Data Locality

– Crash Consistency

• File System Checker

• Journaling

CSCI5550 Lec03: File System Basics 50

Application

File System

Block Layer

Device Driver

I/O Device

User

Kernel

I/O Stack

Caching and Buffering

• Like in UNIX file system, reading and writing files can

be expensive, incurring many I/Os to the (slow) disk.

• Most file systems leverage the system memory to:

– Cache some important or popular blocks

• To avoid repeated reads to the same blocks

• To avoid performing hundreds of reads to open a file with long

pathname (e.g., /1/2/3/…/100/file.txt).

– Buffer a number of writes (for 5~30 seconds)

• To allow writes to the same location (in memory)

• To batch updates into a smaller set of I/Os

• To allow rescheduling of I/Os

– Cache/buffer trades reliability for performance!

• But not everyone likes it; some applications (e.g., databases)

require frequent fsync() to avoid losing data kept in the write buffer.

CSCI5550 Lec03: File System Basics 51

Outline

• File System Organization

– Abstraction: Files and Directories

– Metadata Region and Data Region

• File System Interface

• File System Implementations

– UNIX File System

• Access Paths: Reading and Writing

• Caching and Buffering

– Fast File System (FFS)

• Disk Awareness

• Data Locality

– Crash Consistency

• File System Checker

• Journaling

CSCI5550 Lec03: File System Basics 52

Application

File System

Block Layer

Device Driver

I/O Device

User

Kernel

I/O Stack

Revisit File System Organization (1/2)

• “Old UNIX File System” by Ken Thompson:

– The super block (S) contained the file system information:

• How big the volume is, how many inodes there are, a pointer to the

head of a free list of blocks, and so forth.

– The inode region contained all inodes for the file system.

– Most of the disk space was taken up by data blocks.

• Problem 1: Poor Performance

– The file system was delivering only 2% of disk bandwidth,

because of expensive disk positioning costs.

• The data blocks of a file were often very far away from its inode.

– An expensive seek was induced whenever one first read the inode,

and then read the file system block.
CSCI5550 Lec03: File System Basics 53

Revisit File System Organization (2/2)

• “Old UNIX File System” by Ken Thompson:

• Problem 2: Fragmentation

CSCI5550 Lec03: File System Basics 54

– External Fragmentation

• Free block space is not

contiguous.

• A large file may have blocks

scattered across disk.

• Disk defragmentation tools

may help by reorganization.

– Internal Fragmentation

• Reads/writes are in units of

blocks.

• If a small file cannot cover a

block, block space is wasted.

• Smaller blocks may have

more positioning overhead.

After writing file E of four blocks After writing file F of 1/2 block

F

Cylinder:

Tracks at same

distance from

center across

different surfaces

(same color)

Cylinder Group:

A set of 𝑁
consecutive

cylinders

(different color)

Fast File System (FFS) by Berkeley

• Goal: Make the file system structures and allocation

policies to be “disk-aware” to improve performance.

– By keeping the same file system interface (i.e., system calls)

but changing the internal implementation.

• Key: FFS divides disk into cylinder groups.

CSCI5550 Lec03: File System Basics 55

Fast File System (FFS) (2/3)

• FFS aggregates 𝑁 consecutive cylinders into a group,

and the disk is of a collection of cylinder groups.

• Modern disks do not export cylinder information for

the file system to explore.

• Modern FSs instead organize disk into block groups.

– Each block group is of the consecutive block addresses

(rather than consecutive cylinders).

CSCI5550 Lec03: File System Basics 56

…

Fast File System (FFS) (3/3)

• FFS maintains similar structures for each group:

– A copy of superblock (S)

– Per-group inode bitmap (ib) and data bitmap (db)

– Per-group inode and data block regions.

• FFS further explores the data locality to place files,

directories, and associated metadata on disk:

keep related stuff together, keep unrelated stuff far apart

 Allocate data blocks of a file in the same group as its inode

 Place files of the same directory in the same group

 Balance directories across groups

CSCI5550 Lec03: File System Basics 57

Data Locality

• Locality (i.e., tendency) is found in real file accesses.

CSCI5550 Lec03: File System Basics 58

Locality: How far up
the directory tree to find
the common ancestor

40% of file accesses were to either the
same file or to one in the same directory
(i.e., a difference of zero or one)

another 25% were to files that
had a distance of two

assume files are
randomly accessed

Large-File Exception

• What if file size is larger than group size?

– Filling the whole group with a large file is undesirable.

– It prevents “related” files being placed in the same group.

• FFS divides a file into chunks and stores chunks in

different groups evenly.

– Large-enough chunk amortizes the positioning overhead.

CSCI5550 Lec03: File System Basics 59

Discussion

• Question: How big does a chunk have to be in order

to spend half (i.e., 50%) of time in transfer?

• Let’s assume that

– Data transfer rate: 40 MB/s

– Average disk positioning time: 10 ms

CSCI5550 Lec03: File System Basics 60

• Answer:

– Half of time: 10 ms transferring

for every 10 ms positioning

– That is, how many data we can

transfer in 10 ms?

Outline

• File System Organization

– Abstraction: Files and Directories

– Metadata Region and Data Region

• File System Interface

• File System Implementations

– UNIX File System

• Access Paths: Reading and Writing

• Caching and Buffering

– Fast File System (FFS)

• Disk Awareness

• Data Locality

– Crash Consistency

• File System Checker

• Journaling

CSCI5550 Lec03: File System Basics 61

Application

File System

Block Layer

Device Driver

I/O Device

User

Kernel

I/O Stack

Crash Consistency

• File system data structures must persist.

• Challenge: How to update persistent data structures

despite the presence of power loss or system crash.

– The on-disk structure may be left in an inconsistent state.

• Solutions to the crash-consistency problem:

 File System Checker (FSCK)

 Journaling (a.k.a. Write-ahead Logging)

CSCI5550 Lec03: File System Basics 62



Crash Scenarios (1/3)

• Consider appending a data block to an existing file:

• The file system must perform three writes:

 the new data block (Db)

 the inode to point to the new block (I[v1] I[v2])

 the data bitmap to indicate the allocation (B[v1] B[v2])

• A crash may happen at any time. (How many types?)
CSCI5550 Lec03: File System Basics 63

Crash Scenarios (2/3)

• Consider only one single write succeeds:

– Just the data block (Db):

• File system remains consistent, but user loses data.

• It is as if the write never occurred.

– Just the updated inode (I[v2]):

• File system is inconsistent:

– Inode says it has data, but bitmap says otherwise (disagreement).

• If we trust inode, we will read garbage data (not Db) from the disk.

– Just the updated bitmap (B[v2]):

• File system is inconsistent:

– Bitmap says the block is allocated, but inode says otherwise.

• It would result in a space leak, as the block would never be used.

CSCI5550 Lec03: File System Basics 64

Crash Scenarios (3/3)

• Consider two writes succeed:

– The inode (I[v2]) and bitmap (B[v2]):

• The file system “metadata” is completely consistent:

– Inode has a pointer to the block, and bitmap also indicates it is in use.

• But we will read garbage data (not Db) from the disk.

– The inode (I[v2]) and data block (Db):

• File system is inconsistent:

– Inode says it has data, but bitmap says otherwise (disagreement).

• If we trust inode, we might read right data (i.e., Db) from the disk.

– The bitmap (B[v2]) and data block (Db):

• File system is inconsistent.

• We have no idea which file Db belongs to, and face space leak.

CSCI5550 Lec03: File System Basics 65

Naive Solution

• What we’d like to do ideally is move the file system

from one consistent state to another atomically.

– E.g., (before the file got appended)  (after the inode,

bitmap, and new data block have been written to disk)

• Unfortunately, we can’t do this easily.

– The disk only commits one write at a time.

– Crashes or power loss may occur between these updates.

CSCI5550 Lec03: File System Basics 66

Outline

• File System Organization

– Abstraction: Files and Directories

– Metadata Region and Data Region

• File System Interface

• File System Implementations

– UNIX File System

• Access Paths: Reading and Writing

• Caching and Buffering

– Fast File System (FFS)

• Disk Awareness

• Data Locality

– Crash Consistency

• File System Checker

• Journaling

CSCI5550 Lec03: File System Basics 67

Application

File System

Block Layer

Device Driver

I/O Device

User

Kernel

I/O Stack

Solution #1: File System Checker

• Early file systems took a simple approach.

– They let inconsistencies happen and then fix them later.

• fsck is a UNIX tool for fixing such inconsistencies.

– It runs before the file system is mounted.

– It checks superblock, free blocks, inode state, inode links,

duplicates, bad blocks, etc., to make sure the file system

metadata is internally consistent.

• It does not understand the contents of user files; however, it can

perform integrity checks on contents of directories.

• Problems:

 It is very slow (especially for large disk volume).

 It cannot fix all problems: For example, the file system

looks consistent but the inode points to garbage data.

CSCI5550 Lec03: File System Basics 68

Outline

• File System Organization

– Abstraction: Files and Directories

– Metadata Region and Data Region

• File System Interface

• File System Implementations

– UNIX File System

• Access Paths: Reading and Writing

• Caching and Buffering

– Fast File System (FFS)

• Disk Awareness

• Data Locality

– Crash Consistency

• File System Checker

• Journaling

CSCI5550 Lec03: File System Basics 69

Application

File System

Block Layer

Device Driver

I/O Device

User

Kernel

I/O Stack

Solution #2: Journaling

• Journaling (or write-ahead logging) is the most

popular solution to the consistency problem.

– It first writes a note to a separate log structure (somewhere

else on the disk) before updating the structures in place.

– It adds a bit of work during updates; but the log tells what to

fix after a crash without scanning the entire disk.

• Linux ext3 incorporates journaling into FS as follows:

– The disk is divided into block groups as FFS, ext2, etc.

• Each group has its inode/data bitmap, inodes, and data blocks.

– Journal (log) occupies some small amount of space.

• Question: What should we note in the journal?
CSCI5550 Lec03: File System Basics 70

Data Journaling (1/4)

• Consider the example of block appending with three

writes: inode (I[v2]), bitmap (B[v2]), data block (Db).

• Data Journaling: Write all of them into the log as a

transaction, before updating them in place.

– The transaction begin (TxB) tells us about this update.

• Including information about this pending update (e.g., the addresses

of the three blocks), and a transaction identifier (TID).

– The middle contains the exact contents of the three blocks.

– The final block (TxE) is a marker of the end with the TID.

• Checkpoint: Write the pending data and metadata

updates to the final locations in the file system.
CSCI5550 Lec03: File System Basics 71

Data Journaling (2/4)

• Question: How should data journaling issue the five

writes of a transaction (TxB, I[v2], B[v2], Db, TxE)?

• Approach #1: Issue them one by one

• It is safe, but too slow.

– Approach #2: Issue all five writes at once

• It turns five writes into a sequential one and thus be faster.

• It is unsafe, since the disk internally re-schedules I/Os.

– If disk loses power before writing any of them to the journal,

the wrong contents are used during replay.

– For example, the garbage block “??” is copied to the final

location of Db when the file system replays the transaction.

CSCI5550 Lec03: File System Basics 72

Data Journaling (3/4)

• (Correct) Approach #3: Issue writes in two steps

Step 1) Issue all writes except TxE at once

Step 2) Issue the write of TxE, leaving journal in the safe state

• To ensure the write of TxE is atomic, it must be a 512-byte write.

• The sequence of data journaling:

 Journal Write: Write transaction content except TxE

 Journal Commit: Write the transaction commit block (TxE)

 Checkpoint: Write pending updates to final disk locations

CSCI5550 Lec03: File System Basics 73

Journal

Write

Journal

Commit

Data Journaling (4/4)

• Recovery

– The file system scans the log and looks for transactions

that have committed but not checkpointed yet.

– Committed transactions are replayed in order (a.k.a., redo).

• Redundant updates are possible, but they don’t hurt consistency.

• Optimization(s)

– Batching Log Updates

• Some file systems (e.g., ext3) do not commit each update at a time,

but buffer updates into a global transaction to reduce write traffic.

– Making The Log Finite

• The journal is a finite-sized circular log by marking the oldest and

newest non-checkpointed transactions in the journal superblock.

CSCI5550 Lec03: File System Basics 74

Metadata Journaling

• Data journaling doubles write traffic to the disk.

• Metadata Journaling (or Ordered Journaling): Log

everything except the user data (i.e., Db).

• Key Issue: The ordering of user data write is critical.

– Write Db after the transaction completes:

• The file system is consistent.

• But inode (I[v2]) may point to garbage data if the write of Db fails.

– Write Db before the transaction completes:

• Both file system and data consistency can be guaranteed.

CSCI5550 Lec03: File System Basics 75

Metadata Journaling

• The sequence of metadata journaling:

 Data Write: Write data to final location

 Journal Metadata Write: Write the begin block (TxB) and

metadata (I[v2], B[v2]) to log

 Journal Commit: Write the transaction commit block (TxE)

 Checkpoint Metadata: Write the contents of metadata

update to their final locations within the file system

 Free: Mark the transaction free in the journal superblock

• Notes:

– Forcing the data write to complete (Step 1) before issuing

writes to the journal (Step 2) is not required.

– The only real requirement is that Steps 1 and 2 complete

before the issuing of the journal commit block (Step 3).

CSCI5550 Lec03: File System Basics 76

Metadata Journaling

• Tricky Case: Block Reuse

– Let’s say we have a directory foo at block 1000.

– Suppose the user  adds a new entry to the directory foo,

 deletes the directory content (nothing logged!), and 

creates a new file foobar at block 1000 (by reusing it).

– The directory content is metadata and should be logged.

– What happens if we recover from a crash?

• The recovery process simply replays everything in the log, including

the write of directory data (D[foo]) in block 1000.

• This overwrites the user data of new file foobar by directory data.

– Solution: Add a revoke record to avoid re-writing old data.

CSCI5550 Lec03: File System Basics 77

 

Wrap-up: Journaling Timeline
Data Journaling

TxB Metadata Data TxE Metadata Data

Issue Issue Issue

Complete Complete Complete

Issue

Complete

Issue Issue

Complete Complete

CSCI5550 Lec03: File System Basics 78

Metadata Journaling

TxB Metadata TxE Metadata Data

Issue Issue Issue

Complete Complete Complete

Issue

Complete

Issue

Complete

Other Approaches

• Copy-On-Write (COW)

– Never overwrites files or directories in place.

– Places new updates to previously unused locations on disk.

– Includes the newly updated structures after a number of

updates are completed.

– Built on the design of the log-structured file system (LFS).

• Backpointer-Based Consistency (BBC)

– Adds a backpointer to every data block.

– Achieves lazy crash consistency without ordering.

• By checking if the forward pointer (e.g., the address in the inode or

direct block) points to a block that refers back to it.

CSCI5550 Lec03: File System Basics 79

Summary

• File System Organization

– Abstraction: Files and Directories

– Metadata Region and Data Region

• File System Interface

• File System Implementations

– UNIX File System

• Access Paths: Reading and Writing

• Caching and Buffering

– Fast File System (FFS)

• Disk Awareness

• Data Locality

– Crash Consistency

• File System Checker

• Journaling

CSCI5550 Lec03: File System Basics 80

Application

File System

Block Layer

Device Driver

I/O Device

User

Kernel

I/O Stack

